Inner iterations in the shift-invert residual Arnoldi method and the Jacobi-Davidson method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling Inner Iterations in the Jacobi-Davidson Method

The Jacobi–Davidson method is an eigenvalue solver which uses the iterative (and in general inaccurate) solution of inner linear systems to progress, in an outer iteration, towards a particular solution of the eigenproblem. In this paper we prove a relation between the residual norm of the inner linear system and the residual norm of the eigenvalue problem. We show that the latter may be estima...

متن کامل

A Theoretical Comparison between Inner Products in the Shift-invert Arnoldi Method and the Spectral Transformation Lanczos Method

The spectral transformation Lanczos method and the shift-invert Arnoldi method are probably the most popular methods for the solution of linear generalized eigenvalue problems originating from engineering applications, including structural and acoustic analyses and fluid dynamics. The orthogonalization of the Krylov vectors requires inner products. Often, one employs the standard inner product,...

متن کامل

The Jacobi–Davidson method

The Jacobi–Davidson method is a popular technique to compute a few eigenpairs of large sparse matrices. Its introduction, about a decade ago, was motivated by the fact that standard eigensolvers often require an expensive factorization of the matrix to compute interior eigenvalues. Such a factorization may be infeasible for large matrices as arise in today’s large-scale simulations. In the Jaco...

متن کامل

Shift-invert Arnoldi Approximation to the Toeplitz

The shift-invert Arnoldi method is employed to generate an orthonormal basis from the Krylov subspace corresponding to a real Toeplitz matrix and an initial vector. The vectors and recurrence coefficients produced by this method are exploited to approximate the Toeplitz matrix exponential. Toeplitz matrix inversion formula and rapid Toeplitz matrix-vector multiplications are utilized to lower t...

متن کامل

Backward error analysis of the shift-and-invert Arnoldi algorithm

We perform a backward error analysis of the inexact shift-and-invert Arnoldi algorithm. We consider inexactness in the solution of the arising linear systems, as well as in the orthonormalization steps, and take the non-orthonormality of the computed Krylov basis into account. We show that the computed basis and Hessenberg matrix satisfy an exact shift-and-invert Krylov relation for a perturbed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China Mathematics

سال: 2014

ISSN: 1674-7283,1869-1862

DOI: 10.1007/s11425-014-4791-5